Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 251: 126286, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579904

RESUMO

H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pßH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pßH7N2SH9/DGL NPs by encapsulating the pßH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pßH7N2SH9, including higher levels of HI antibodies than naked pßH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.

2.
Bioeng Transl Med ; 8(3): e10510, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206211

RESUMO

Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.

3.
Int J Biol Macromol ; 221: 613-622, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089095

RESUMO

This is a report on the encapsulation amoxicillin (AMX) in the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMCS) nanoparticles (NPs) for biomedical applications. The N-2-HACC/CMCS NPs have broad-spectrum antibacterial properties. In order to achieve sustained and slow drug release, improve drug transport efficiency and bioavailability, prolong drug residence time, and reduce pollution, we synthesized highly efficient, easily absorbed and rapidly degradable nano-formulation veterinary antibiotics in this study. The N-2-HACC/CMCS NPs were used for the encapsulation of AMX, and the cytocompatibility, in vitro release, in vivo drug release kinetics and antimicrobial activity of N-2-HACC/CMCS/AMX NPs were investigated. The NPs displayed a round shape and smooth surface, and the NPs allowed the sustained release of AMX at a much slower rate than that of non-coated AMX. The NPs exhibited excellent cytocompatibility and the antimicrobial activity against Escherichia coli, Acinetobacter baumannii, Streptococcus pneumoniae and Staphylococcus aureus. Moreover, the NPs could store at 4 °C, -20 °C and 25 ± 5 °C for 30 d. These results suggested that the N-2-HACC/CMCS NPs could be availed as a candidate for drug delivery carrier to achieve sustained and slow release, improve bioavailability, prolong residence time at the target site, and reduce the dosage of drug.


Assuntos
Quitosana , Nanopartículas , Cloreto de Amônio , Amoxicilina/farmacologia , Portadores de Fármacos , Antibacterianos/farmacologia , Derivados da Hipromelose , Escherichia coli
4.
Mater Sci Eng C Mater Biol Appl ; 101: 596-613, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029353

RESUMO

Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.


Assuntos
Nanotecnologia/métodos , Antineoplásicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...